THE trans-INFLUENCE IN POLYENYL-METAL COMPLEXES; THE CRYSTAL AND MOLECULAR STRUCTURE OF HYDRIDO(n-PENTAMETHYLCYCLOPENTADIENYL)BIS(TRIPHENYLPHOSPHINE)RHODIUM(III) HEXAFLUOROPHOSPHATE *

D. MICHAEL P. MINGOS * and PETER C. MINSHALL
Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OXI 3QR (Great Britain)
M.B. HURSTHOUSE, K.M.A. MALIK and S.D. WILLOUGHBY
Department of Chemistry, Queen Mary College, Mile End Road, London E1 4NS (Great Britain)

(Received May 29th, 1979)

Abstract

Summary The structure of $\left[\mathrm{Rh}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{H}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}$ has been determined by ${ }^{1} \mathrm{H}$ NMR studies and a single-crystal X-ray analysis. The compound crystallises in the orthrhombic space group $P 2_{1} 2_{1} 2_{1}$ with lattice constants a 12.926(3), b 15.216(3) and $c=20.957(4) \AA$, with $Z=4$. The structure was determined using diffractometer data and by least-squares techniques to $R=0.0887$ bascd on 2805 independent reflections with $F_{0}>4 \sigma\left(F_{0}\right)$. The geometry about the metal atom may be inferred to be a "piano-stool" arrangement with the $\mathrm{C}_{5} \mathrm{Me}_{5}$ ring representing the seat and the PPh_{3} and H ligands the legs, although the hydrogen atom was not directly located in the crystallographic analysis. The observed distortions in the $\mathrm{C}_{5} \mathrm{Me}_{5}$ ring may be attributed to the large trans-influence of the hydrido ligand.

Introduction

Much of our current understanding of the trans-effect and trans-influence [1] in simple transition metal coordination compounds has arisen from research initiated by Professor Chatt and his coworkers [2] in the ICI laboratories in the 1950's. The observation that ligands such as $\mathrm{CO}, \mathrm{C}_{2} \mathrm{H}_{4}$ and PR_{3} exhibited a high trans-effect and also had the potential to act as π-acid ligands when coordinated to electron rich transition metals led to a general theory of the trans-

[^0]effect based on a π-bonding model [3]. The synthesis of stabie alkyl and hydrido complexes of the platinum metals in the ICI laboratories permitted their investigation by a wide range of spectroscopic and structural techniques [4-6] and resulted in the recognition that such ligands not only exhibited high trans-effects [7] but also gave rise to a considerable lengthening of the trans-metal-ligand bond. The study of these trans-influences using NMR and structural techniques has continued to attract the interest of chemists to this date, although there is still some controversy as to the electronic forces responsible for the transinfluence and its relationship to the trans-effect $[8,9]$.

The structural implications of having ligands of high trans-influence on a polyene also coordinated to the same metal have not been investigated in a systematic fashion, however. Early structural studies by Dahl, Mason and their coworkers $[10,11]$ gave some indication that if the axial symmetry of a metalligand fragment were removed, for example by a substitution such as that illustrated in I and II then distortions in the metal polyene unit resulted.

(I)

(II)

The variation in $C-C$ distances in such complexes was consistent with an "ene-enyl" localisation as indicated in III, and was attributed to unequal populations of the $\mathrm{C}_{5} \mathrm{H}_{5} e_{1}$ molecular orbitals. However, there was no attempt to evaluate the influence of the electronic characteristics of the ligand X on the observed distortion. In this context it is perhaps worth noting that an alternative type of distortion has been reported for cyclopentadienyl complexes of the type $\mathrm{M}\left(\mathrm{C}_{5} \mathrm{R}_{5}\right)(\mathrm{L})_{2}$ and is illustrated in IV [12].

(III)

(IV)

The structural analysis reported in this paper of $\left[\mathrm{Rh}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{H}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}$, is the first in a series of such studies aimed at elucidating the structural distortions arising from the coordination of ligands of high trans-influence to cyclopentadienylmetal fragments.

Experimental

Unless otherwise siated the reactions were performed under anaerobic conditions and the solvents were purified and distilled under nitrogen before use.

Infrared spectra were recorded on a Perkin-Elmer 577 spectrophotometer. Elemental analyses were performed by Butterworth Microanalytical Laboratories. The proton magnetic resonance spectra were recorded on a Varian HA100 and Bruker HX90 spectrometers.
[$\left.\mathrm{Rh}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Cl}_{2}\right]_{2}$ was prepared by standard literature methods [13] and converted into $\mathrm{Rh}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)$. The details of the preparation of $\operatorname{Rh}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)$ and single crystal structural analysis of this compound will be given in a subsequent publication [14].

Hydrido(triphenylphosphine)(η-pentamethylcyclopentadienyl)rhodium(III)

 hexafluorophosphateTriphenylphosphine ($0.38 \mathrm{~g}, 1.48 \mathrm{mmol}$) was added to a suspension of $\mathrm{Rh}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)(0.46 \mathrm{~g}, 0.74 \mathrm{mmol})$ in methanol ($30 \mathrm{~cm}^{3}$) and air was slowly bubbled through the mixture at $55^{\circ} \mathrm{C}$ for 0.5 h . The mixture was cooled to room temperature and filtered. Concentration of the filtrate to $15 \mathrm{~cm}^{3}$ and addition of $\mathrm{NH}_{4} \mathrm{PF}_{6}(0.30 \mathrm{~g}, 1.8 \mathrm{mmol})$ gave yellow crystals of [$\left.\mathrm{RhH}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}(0.32 \mathrm{~g}, 48 \%)$. The sample was recrystallised from acetone/ether to give an analytically pure sample, m.p. $192-194^{\circ} \mathrm{C}$ (dec.). (Found: C, 59.0; H, 4.9; P, 10.2, $\mathrm{RhC}_{46} \mathrm{H}_{46} \mathrm{P}_{3} \mathrm{~F}_{6}$ calcd.: C, 60.8; H, 5.1; P, 10.2\%) $\Lambda_{m}\left(10^{-3}\right.$ solution in nitrobenzene) $22.8 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, which is consistent with its formulation as a $1 / 1$ electrolyte.

Hydridobis(triphenylphosphine)(η-pentamethylcyclopentadienyl)rhodium(III) tetraphenylborate

This compound was prepared similarly using NaBPh_{4} instead of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ in 51% yield, m.p. $158-159^{\circ} \mathrm{C}$ (dec.). (Found: C, $78.1 ; \mathrm{H}, 6.0 . \mathrm{RhC}_{70} \mathrm{H}_{66} \mathrm{BP}_{2}$ calcd.: $\mathrm{C}, 77.7 ; \mathrm{H}, 6.1 \%) . \Lambda_{\mathrm{m}}\left(\sim 10^{-3}\right.$ solution in nitrobenzene) $20.2 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ mol^{-1}.

Hydridobis(triphenylphosphine)(η-pentamethylcyclopentadienyl)rhodium(III)

 perchlorateTriphenylphosphine ($0.92 \mathrm{~g}, 3.51 \mathrm{mmol}$) was added to a solution of $\operatorname{Rh}(\eta$ $\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}(0.51 \mathrm{~g}, 1.73 \mathrm{mmol})$ in dry benzene ($25 \mathrm{~cm}^{3}$) and the mixture was stirred at $60^{\circ} \mathrm{C}$ for $1 \mathrm{~h} . \mathrm{HClO}_{4}(0.35 \mathrm{~g}, 3.5 \mathrm{mmol})$ in methanol ($25 \mathrm{~cm}^{3}$) was added to the reaction mixture with stirring. Addition of ether to the yellow solution gave crystals of $\left[\mathrm{Rh}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{H}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}(1.22 \mathrm{~g}, 82 \%)$. (Found C, 62.8; $\mathrm{H}, 5.1$. $\mathrm{RhC}_{46} \mathrm{H}_{46} \mathrm{ClO}_{4} \mathrm{P}_{2}$ calcd.: $\mathrm{C}, 64.0 ; \mathrm{H}, 5.3 \%$).

The spectroscopic data for the complexes [$\left.\mathrm{Rh}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{H}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{X}$, where $\mathrm{X}=\mathrm{PF}_{6}, \mathrm{ClO}_{4}$ and BPh_{4}, are summarised in Table 1. Preliminary examination of the crystals from the above reactions suggested that the PF_{6} salt would be most suitable for a three dimensional single crystal analysis.

Collection and reduction of diffraction data
$\left[\mathrm{Rh}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)(\mathrm{H})\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}$ was recrystallised from $\mathrm{CHCl}_{3} /$ petroleum ($40-60^{\circ} \mathrm{C}$) as yellow transparent irregular blocks. A single crystal with overall dimensions $0.40 \times 0.30 \times 0.30 \mathrm{~mm}$ was selected for the crystallographic analysis and mounted on the end of a fine glass fibre. Preliminary oscillation and
TABLE 1
SPECTROSCOPIC DATA FOR $\left(\mathrm{Rh}\left(7 \cdot \mathrm{C}_{5} \mathrm{Me}_{5}\right)(\mathrm{H})\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{IX}\left(\mathrm{X}=\mathrm{PF}_{6} \mathrm{BPh}_{4}\right.\right.$ or $\left.\mathrm{ClO}_{4}\right)$

Compound	$\nu(\mathrm{Rb}-\mathrm{H}) \mathrm{cm}^{-1}$	$\mathrm{C}_{5} \mathrm{Me}_{5}$	$\mathrm{Rh}-\mathrm{H}$	Other
$\left[\mathrm{Rh}\left(\eta \cdot \mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{H}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}$	2050	1,37(m)	$\begin{aligned} & -11,05(\mathrm{dt})^{b} \\ & J(\mathrm{R} / \mathrm{H}-\mathrm{H}) 18 \mathrm{~Hz} \\ & { }^{J}(\mathrm{P}-\mathrm{H}) 30 \mathrm{~Hz} \end{aligned}$	
$\left(\mathrm{Rh}\left(\eta \cdot \mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{H}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BH}_{4}$	2050	1,35(m)	$\begin{aligned} & -11,00(\mathrm{dt})^{a} \\ & \begin{array}{l} \mathrm{J}(\mathrm{Rh}-\mathrm{H}) 18 \mathrm{~Hz} \\ 2_{J(\mathrm{P}-\mathrm{H}) 28 \mathrm{~Hz}} \end{array} . \end{aligned}$	7.2-7.4 complex ($\mathrm{Ph}^{\text {, }} \mathrm{PPh}_{3}$ and BPh_{4})
$\left[\mathrm{Rh}_{(7} 7 \cdot \mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Hf}_{\left(\mathrm{PPH}_{3}\right)_{2}} \mathrm{ClO}_{4}$	2050	1,40(m)	$\begin{aligned} & -11.02(\mathrm{dt})^{a} \\ & J(\mathrm{Rh}-\mathrm{H}) 18 \mathrm{~Hz} \\ & J(\mathrm{P}-\mathrm{H}) 30 \mathrm{~Hz} \end{aligned}$	7.2-7.4 complex ($\mathrm{Ph}_{1} \mathrm{PPh}_{3}$)

[^1]TABLE 2
SUMMARY OF CRYSTAL DATA FOR [Rh($\left.\left.\boldsymbol{\eta}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)(\mathrm{H})\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}$

```
F.W.
    908
a 12.926(3) A
b 15.216(3) & 杖 人 = \gamma =90
c 20.957(4) &
Volume 4122 A 
Systematic absences h00 for h odd; OhO for k odd; 0Ol for l odd
Space group P2122_21
Z=4
d(calcd.) 1.468 g cm
d(found)
F(000)
    1.45(2) 8 cm
1860
\lambda(Mo-K_\alpha)
0.7107 A
2805 symmetry independent reflections 1.5\leqslant20\leqslant28
Crystal dimensions 0.40 < 0.30 }\times0.30\textrm{mm
```

Weissenberg photographs taken with $\mathrm{Cu}-K_{\alpha}(\lambda 1.51418 \AA)$ radiation showed the complex to crystallise in the orthorhombic system in a cell of dimensions, $a 12.93 \AA, b 15.22 \AA$ and $c 20.96 \AA$. The observed systematic absences were consistent with the space group $P 2_{1} 2_{1} 2_{1}$ ($D_{2}^{4}-19$) [15], and the measured and calculated densities suggested that $Z=4$.

After these preliminary analyses the crystal was carefully set on a Nonius CAD 4 automatic diffractometer and the setting angles of 15 strong reflections were used to determine the unit cell parameters accurately. These together with the other relevant crystallographic data are summarised in Table 2. All the reflections used in the crystallographic analysis were given a fast prescan and those with a net count greater than 5 in the prescan were subjected to a slow scan to yield a total count of 3000 , but with the maximum time for measuring any reflection set at 60 s . The slow scan was made over the range of $0.70+0.30$ $\tan \theta$ in 96 steps, the first and last 16 being considered as left and right backgrounds, respectively, and the intermediate 64 steps as the peak. The aperture width was determined from the expression $4.00+0.30 \tan \theta \mathrm{~mm}$.

The net intensity and its estimated standard deviation were calculated from the equations:
$I_{\mathrm{obs}}=\left[c-2\left(B_{\mathrm{L}}+B_{\mathrm{R}}\right)\right] S$
$\sigma\left(I_{\text {obs }}\right)=\left[c+4\left(B_{\mathrm{L}}+B_{\mathrm{R}}\right)\right]^{1 / 2} S$
where C is the peak count, B_{L} and B_{R} are the two background counts and S is the scale factor which includes the Lorentz and polarization effects and a correction for the time taken to measure a reflection.

The intensity data was collected in the range $1.5 \leqslant 0 \leqslant 28^{\circ}$ with two intensity control reflections being measured every 50 reflections. The crystals showed no indications of decomposition during data collection. A total of 4392 reflections were measured 2805 of which satisfied the condition $\left|F_{0}\right| \geqslant 4 \sigma\left(\left|F_{0}\right|\right)$ and were symmetry independent.

The structure was solved and refined using conventional Patterson, Fourier and least squares methods. A computed three-dimensional Patterson map indi-
TABLE 3
FIRACTIONAL COORDINATES (Rh $\times 10^{5}$: athers $\times 10^{4}$) OF NON-HYDROGEN $A T O M S$ IN $\left[\mathrm{Rh}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}$

Atom	N/4	$y / 1$	2/6	Atom	x / a	9/b	2/c	
Rh	32852 (3)	-4900(3)	42695(3)	C(122)	$3239(8)$	1755(7)	3563(6)	
$\mathrm{P}(1)$	1981(3)	5363 (3)	. 4215 (2)	C(123)	3428(8)	$2569(7)$	3265 (5)	
$P(2)$	$4031(3)$	-108(3)	5227(2)	C(124)	2677(8)	3218(7)	3278(5)	
$\mathrm{P}(3)$	12,48(5)	3729(4)	7587(3)	C(125)	1739(8)	3073(7)	3589(5)	
$\mathrm{F}(1)$	$3431(13)$	5326(8)	2756 (8)	C(126)	1550(8)	2269 (7)	3887(5)	
$\mathrm{F}(2)$	2662(14)	6652(13)	2639(12)	$\mathrm{C}(121)$	2300(8)	1610(7)	3874(5)	
$F(3)$	$4060(17)$	7244 (10)	2426(10)	C(132)	848(12)	-10(9)	5236(7)	
$\mathrm{F}(4)$	$4879(14)$	5964(14)	2512(12)	C(133)	320(12)	63(9)	5814(7)	
$\mathrm{F}(5)$	3628(2.4)	6062(13)	1898(7)	C(134)	$305(12)$	863(9)	6139(7)	
F(6)	3900 (21)	6501(12)	3285 (8)	C(135)	$819(12)$	1590(9)	5886(7)	
C(1)	$3152(16)$	-1083(10)	4259(10)	C(136)	1348(12)	1517(9)	5309(7)	
C(2)	2539(11)	-1626(10)	$3742(9)$	C(131)	1362(12)	718(9)	4983(7)	
C(3)	$3252(15)$	-1159(11)	$3328(7)$	C(212)	6047(10)	--226(7)	5755(5)	
C(4)	4298(15)	-1268(11)	3601(8)	C(213)	7115(10)	-103(7)	$5732(5)$	
C(3)	4196(13)	-1739(11)	4123(9)	C(214)	7585(10)	160(7)	5164(5)	
C(11)	2728(17)	-2585(14)	4748(10)	C(215)	6986(10)	301(7)	4619(5)	
$\mathrm{C}(21)$	1445(16)	-1804(14)	3550 (11)	C(216)	Б918(10)	178(7)	4643(5)	
C(31)	3066(22)	-794(15)	2670 (9)	C(211)	5448(10)	$-85(7)$	5211 (5)	
C(41)	5315(18)	-1064(16)	3225(11)	C(222)	3957(9)	1701(7)	5142(4)	
C(51)	5067(15)	-2165(12)	4490(10)	C(223)	3871 (9)	$2560(7)$	5369(4)	
C(112)	-49(9)	-80(8)	3894(6)	C(224)	3658(9)	2711(7)	$6012(4)$	
C(113)	-845(9)	-220(8)	3458(6)	C (225)	3531(9)	2004(7)	6429(4)	
C(114)	-716(9)	0 (8)	2819(6)	C(226)	3616 (9)	1145(7)	6202(4)	
C(115)	209(9)	379 (8)	2615 (G)	C (221)	3820 (9)	994(7)	5550 (4)	
C(116)	1006(9)	529(8)	3051(6)	C(232)	2700(8)	-777(7)	6140(6)	
C(111)	$877(9)$	299(8)	3690(6)	C(233)	2348(8)	$-1396(7)$	6581(6)	
				C(234)	2967(8)	-2113(7)	6741(6)	
				c(235)	3939(8)	-2212(7)	6460(6)	
				C(236)	4291 (8)	-1594 (7)	6020(6)	
				C(231)	$3672(8)$	-876(7)	5860 (6)	

TABLE 4
ANISOTROPIC VIBRATIONAL AMPLITUDES $\left(\AA^{2} \times 10^{4}\right)$ OF NON-HYDROGEN ATOMS IN $\left[\operatorname{RhH}\left(\eta-C_{5} \mathrm{Me}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}$ (estimated standard devintions in parentheses)

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Rh	605(10)	29.4(6)	$383(7)$	-111(7)	-248(8)	189(8)
$\mathrm{P}(1)$	245(23)	358(20)	$339(23)$	-21(25)	28(21)	-13(21)
$\mathrm{P}(2)$	262(26)	284(23)	$322(27)$	10(20)	-29(21)	20(20)
$p(3)$	770(45)	447 (31)	$548(37)$	$38(28)$	-7(32)	46(31)
$\mathrm{F}(1)$	1654(151)	495(84)	1871(165)	30(03)	720(141)	-151(98)
$f(2)$	1249(152)	1508(172)	3141(297)	-434(195)	-438(181)	1046(143)
$\mathrm{F}(3)$	2525(243)	590(07)	2248(225)	16(122)	237(205)	-675(128)
$\mathrm{F}(4)$	965 (130)	1606(172)	2547(234)	-147(168)	$-88(148)$	$338(124)$
$F(5)$	4093(386)	1475(166)	628(107)	-254(102)	-85(172)	664(225)
$\mathrm{F}(6)$	3724(338)	1169(146)	$934(126)$	-288(108)	-632(17.5)	642(192)
c(1)	751(153)	286(80)	525(110).	170(95)	-61(138)	8(97)
C(2)	1(78)	311(94)	738(136)	-160(94)	141(87)	-228(71)
c(3)	461(112)	479(97)	265(89)	-193(81)	-206(96)	65(105)
C(4)	664(131)	305 (93)	363(106)	37(87)	-180(97)	32(93)
C(5)	346(110)	311 (91)	578(135)	-235(95)	-148(100)	-74(85)
C(11)	$779(170)$	698(145)	$753(160)$	274(137)	126(141)	-320(131)
C(21)	528(154)	$754(146)$	935(176)	-491(132)	175(12B)	-187(120)
C(31)	1420(240)	915 (179)	388(121)	151(115)	147(151)	203(182)
C(41)	$644(152)$	$996(187)$	679(156)	-85(141)	217(131)	40(146)
C(51)	518(133)	541(120)	$806(167)$	-268(111)	-173(113)	404(106)
C(112)	182(100)	457(108)	1047(171)	-487(116)	$35(108)$	-84(89)
C(113)	325(129)	728(164)	1357(239)	-387(159)	-108(146)	255(113)
C(114)	1215 (246)	982(195)	579(162)	-280(150)	-449(165)	484(181)
C(115)	1205(222)	880(180)	805(178)	248(154)	-850(164)	-246(280)
C(116)	725(142)	506(113)	$468(115)$	-83(111)	-345(107)	144(131)
C(111)	$285(101)$	250(93)	$542(115)$	-17(78)	-209(88)	-32(75)
C(122)	448(120)	487(105)	388(103)	$-144(85)$	-133(105)	-108(110)
C(123)	740 (163)	721(141)	440(115)	185(107)	158(123)	-573(135)
C(124)	1690(301)	315(119)	1034(214)	6(138)	-681(221)	-215(169)
C(125)	860 (187)	476(135)	1308(234)	85 (139)	$-327(198)$	$335(150)$
C(126)	238(112)	453(107)	$720(131)$	-67(99)	-180(99)	41(94)
C(121)	190(99)	330 (93)	487 (108)	-4(83)	-122(84)	-180(80)
C(132)	828(184)	1522(245)	166(107)	305(132)	75(116)	40(174)
c(133)	$327(143)$	2225(345)	976(235)	878(253)	77(158)	369 (179)

TABLE 4 (continued)

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
C(134)	887 (213)	2302(395)	239(127)	7(183)	$73(133)$	696(250)
C(135)	565 (174)	2256(352)	514(181)	-283(203)	-176(138)	336(204)
C(136)	787 (180)	1478(233)	320(123)	-568(142)	-196(115)	569(164)
C(131)	494(13B)	1057(197)	375(113)	187(121)	-41(97)	219(128)
C(212)	616(147)	584(127)	524(133)	-126(116)	-271(125)	27(106)
C(213)	619(140)	555(116)	474(123)	-192(121)	1(125)	146(106)
C(214)	481(136)	401(132)	1034(193)	-146(126)	-94(145)	13(107)
C(215)	812(179)	434(126)	760(154)	69(106)	459(137)	-125(115)
C(216)	581(145)	436(114)	552(135)	-80(98)	58(114)	-143(104)
C(211)	346(107)	329(98)	473(122)	-122(93)	18(97)	25(86)
C(222)	407(117)	299 (96)	466(116)	100(88)	61(97)	-1(91)
C(223)	341(120)	467(121)	¢f6(136)	7(102)	181(102)	-38(99)
C(224)	558(147)	208(94)	1153(199)	-184(111)	99(132)	95(94)
C(225)	1000(195)	435(115)	572(138)	-110(102)	221(134)	302(128)
C(226)	208(108)	384(103)	998(173)	-188(133)	193(107)	-284(87)
C(221)	414(113)	396(101)	264(98)	-11(74)	56(81)	237(90)
C(232)	508(131)	524(123)	$393(110)$	13(95)	35(99)	$87(102)$
C(253)	258(108)	699(131)	517(122)	133(108)	65(96)	$74(106)$
C(234)	$515(142)$	690(140)	549 (130)	$109(115)$	149(112)	-93(116)
C(235)	590(151)	548(126)	645(143)	349(110)	10(121)	121(116)
C(236)	619(129)	371 (100)	607(118)	292(89)	285(99)	243(94)
C(231)	388(103)	297(77)	167(90)	$29(66)$	90(75)	48(71)

TABLE 5
SELECTED DISTANCES (A) AND ANGLES (${ }^{\circ}$) FOR RhH ($\eta-\mathrm{C}_{5} \mathrm{Me}_{5}$) $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PF}_{6}$ (Estimated standard deviations in parentheses).

$R h-C(1)$	$2.265(15)$	$C(1)-C(2)-C(3)$	$106.3(1.4)$
$R h-C(2)$	$2.254(16)$	$C(2)-C(3)-C(4)$	$107.2(1.4)$
$R h-C(3)$	$2.212(15)$	$C(3)-C(4)-C(5)$	$106.9(1.6)$
$R h-C(4)$	$2.246(18)$	$C(4)-C(5)-C(1)$	$113.4(1.7)$
$R h-C(5)$	$2.245(17)$	$C(5)-C(1)-C(2)$	$106.3(1.5)$
$R h \cdots C(11)$	$3.407(16)$	$P(3)-F(1)$	$1.539(20)$
$R h \cdots C(21)$	$3.445(16)$	$P(3)-F(2)$	$1.527(20)$
$R h \cdots C(31)$	$3.391(16)$	$P(3)-F(3)$	$1.569(20)$
$R h \cdots C(41)$	$3.523(17)$	$P(3)-F(4)$	$1.528(20)$
$R h \cdots C(51)$	$3.457(16)$	$P(3)-F(5)$	$1.486(20)$
$C(1)-C(2)$	$1.429(26)$	$F(1)-P(3)-F(2)$	$95.11(1.2)$
$C(2)-C(3)$	$1.451(24)$	$F(1)-P(3)-F(4)$	$89.72(1.2)$
$C(3)-C(4)$	$1.477(26)$	$F(1)-P(3)-F(5)$	$89.66(1.2)$
$C(4)-C(5)$	$1.314(25)$	$F(1)-P(3)-F(6)$	$91.57(1.2)$
$C(1)-C(5)$	$1.426(27)$	$F(2)-P(3)-F(6)$	$87.70(1.2)$
$C(1)-C(11)$	$1.488(28)$	$F(3)-P(3)-F(6)$	$87.57(1.2)$
$C(2)-C(21)$	$1.496(26)$	$F(4)-P(3)-F(6)$	$92.79(1.2)$
$C(3)-C(31)$	$1.506(26)$	$F(1)-P(3)-F(3)$	$83.79(1.2)$
$C(4)-C(41)$	$1.563(29)$	$F(3)-P(3)-F(5)$	$89.66(1.2)$
$C(5)-C(51)$	$1.510(26)$	$F(2)-P(3)-F(5)$	$92.95(1.2)$
$R h-P(1)$	$2.309(4)$	$F(4)-P(3)-F(5)$	$86.45(1.2)$
$R h-P(2)$	$2.306(5)$	$F(3)-P(3)-F(4)$	$91.39(1.2)$

cated the $\mathbf{R h}-R h$ vectors between symmetry related atoms. A difference Fourier synthesis based on the parameters of the Rh atom revealed the two phosphorus atoms coordinated to the metal. Two cycles of full matrix least squares refinement on these positions gave a discrepancy index, R, of 0.31 and located most of the remaining non-hydrogen atoms including the disordered PF_{6} - ion. A further four cycles of refinement on all these positions with the phenyl rings constrained to be regular hexagons ($C-C$ distance $1.395 \AA$) and treated as rigid groups reduced R to 0.15 . At this stage, anisotropic temperature factors were introduced to the $R h, P$ and F atoms which further reduced R to 0.11. In the final refinement, the hydrogen atoms belonging to the PPh_{3} groups were allowed to ride on the parent carbon atoms in the calculated positions ($\mathrm{C}-\mathrm{H}$ fixed at $1.08 \AA$) and anisotropic temperature factors were assigned to all the carbon atoms. The model chosen for the disordered F_{6} group was one in which the six anisotropic atoms occupied the most populated octahedral sites. The weighting scheme used was $\omega=1 /\left(\sigma^{2} F_{0}+0.00070 F_{0}^{2}\right)$ and gave a satisfactory analysis of variance with parity groups, $\sin \theta$ and $\left(F_{0} \mid F_{\max }\right)^{1 / 2}$. The refinement finally converged to $R_{1}=0.0887$ and $R_{2}=0.0924$ where R_{1} and R_{2} are as defined in the usual fashion. The final non-hydrogen atomic fractional coordinates are listed in Table 3, and their anisotropic vibrational amplitudes in Table 4. Intramolecular interatomic distances and interbond angles are tabulated in Table 5%.

[^2]All calculations were performed on the Queen Mary College ICL1904S and University of London CDC 7600 computers with the programs SHELX-76 [16] (structure determination and refinement) and PLUTO [17] (diagrams). Neutral atom scattering factors were taken from reference $18(\mathrm{H})$ and 19 (others) with those of the heavier elements being modified for anomalous dispersion taking the Δf^{\prime} and $\Delta f^{\prime \prime}$ values from ref. 20.

Description of the structure

The structure of $\left[\mathrm{RhH}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}$ consists of discrete anions and cations with the geometry of the cation being a distorted pseudo-octahedron. The labelling scheme used in the following discussion is indicated on the illustration of the molecular structure of the cation shown in Fig. 1.

Despite the partial disorder, the refined $\mathrm{PF}_{6}{ }^{-}$anion has nearly octahedral symmetry. Considering the problem of disorder and the asymmetric environment of the anion, the distortions from idealised octahedral symmetry are not significant. The cis-F-P-F angles range between 84 and 95° (see Table 5) suggesting that the model chosen for the anion is acceptable. The shortest intermolecular contacts involving fluorine atoms are with the phenyl hydrogen atoms with a minimum distance of $2.47 \AA$.

Not surprisingly, the small hydrido ligand in close proximity to the rhodium atom was not directly detected by the X-ray crystal analysis. Its presence has nonetheless been demonstrated by the spectroscopic data summarised in Table 1. Its presence is also suggested by the angle subtended by the $P(1)-R h-P(2)$ with the C_{5} ring plane (ca. 79°, see Table 6). Therefore it can reasonably be

Fig. 1. Molecular structure of $\left[\mathrm{RhH}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$.

TABLE 6
SELECTED LEAST-SQUARES PLANES IN [RhH $\left.\left(\boldsymbol{\eta}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]_{\mathrm{PF}}^{6}$
Equations are of the form $p x+q y+r z=s . \sigma(\AA)$ is the root mean square standard deviation; atomic deviations (A) are in square brackets.

Plane 1 (through atoms $\mathrm{Rh}, \mathrm{P}(1), \mathrm{P}(2)$)

p	q	r	s
7.9561	9.5020	-10.0763	-2.1618

Plane 2 (through atoms $C(1), C(2), C(3), C(4)$ and $C(5)$)

p	q	r	s	σ
-1.6595	12.7273	11.1660	1.6963	0.0049
[C(1), $0.0054 ; C(2),-0.0069 ; C(3)$,	$0.0059 ; C(4)$,	$-0.0027 ; C(5),-0.0017 ; C(11),-0.1384 ; C(21)$,		
$-0.2684: C(31)$,	$-0.2344 ;$	$C(41)$,	$-0.3315 ; C(51)$,	$-0.2785 ; R h, 1.8903]$

Plane 3 (through atoms $C(11), C(21), C(31), C(41)$ and $C(51))$

p	q	r	s	σ
1.4357	12.8903	10.8893	1.2941	0.0440

[C(1), 0.2281; C(2), 0.220; C(3), 0.2699; C(4), 0.2754; C(5), 0.2520;C(11), 0.0513; C(21). -0.0615;
C(31). 0.0495: C(41), -0.0170; C(51), -0.0224: Rh, 2.1397)
Angles between normals to planes
Plane 1 and Plane $2 \quad 79.21^{\circ}$
Plane 1 and Plane 37.83°
Plane 2 and Plane $3 \quad 1.39^{\circ}$
implied that the hydrido ligand, together with the two phosphine ligands represent the three legs of the piano-stool geometry. The isoelectronic complex [$\mathrm{RuH}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{PPh}\right)$] BF_{4} has a closely related geometry [21].

The C_{5} ring of the cation is planar but not coplanar with the carbon atoms of the Me_{5} ring. It is clear from Table 6 that the Me groups are bent away from the rhodium atom to a very significant extent; the ring defined by the methyl carbon atoms is ca. $0.25 \AA$ further from the rhodium atom than the C_{s} ring. The extent of bending back in this complex is substantially greater than in $\mathrm{Rh}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)(\mathrm{dba}) *$ where the $\mathrm{Me}_{5}-\mathrm{C}_{5}$ ring separation is reported [24] to be ca. 0.10 \AA. It seems possible that this departure from the idealised planar geometry of the $\eta-\mathrm{C}_{5} \mathrm{Me}_{5}$ ligand is due to steric effects introduced by the presence of the two triphenylphosphine ligands.

Discussion

The trans-influence of the ligands L and X in complexes of the type $\mathrm{M}\left(\eta-\mathrm{C}_{5} \mathrm{R}_{5}\right) \mathrm{L}_{2} \mathrm{X}$ can have two distinct geometric manifestations. Firstly the combined trans-influence of the ligands L and X is likely to be reflected in the distance of the metal atom from the plane of the C_{5} ring and secondly the difference in the trans-influences of the ligands L and X could be reflected in an asymmetry of the $\mathrm{C}_{5} \mathrm{R}_{5}-\mathrm{M}$ distance parameters.

[^3]The distance of the rhodium atom from the centre of the C_{5} ring in $\left[\mathrm{Rh}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{H}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}$ of $1.890 \AA$ is significantly longer than that observed in the following related complexes: $\left[\mathrm{Rh}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Cl}_{2}\right]_{2}(1.756 \mathrm{~A})$ [22]; $\left[\mathrm{Rh}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Br}_{2}\right]_{2}(1.769 \AA)[22] ;\left\{\mathrm{Rh}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Cl}_{2}\right\}_{2} \mathrm{HCl}(1.777 \AA)$ [23]; $\mathrm{Rh}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\mathrm{NO}_{3}\right)_{2}(1.745 \AA)$ [14] and $\mathrm{Rh}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)(1.815 \AA)$ [14] and approximately the same as that reported for $\mathrm{Rh}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ (dba) (1.899 \AA) [24]. In this series of complexes the $\mathrm{Rh}-\mathrm{C}_{5} \mathrm{Me}_{5}$ distance appears to reflect the combined trans-influence of the non-cyclopentadienyl ligands, with ligands of high trans-influence as H^{-}and PPh_{3} causing a lengthening of this distance compared with ligands of low trans-influence such as Cl^{-}and $\mathrm{NO}_{3}{ }^{-}$. Such an effect is consistent with either an electrostatic or covalent view of the metal cyclopentadienyl bonding, since the combined inductive effects of the tertiary phosphine and hydrido ligands will serve to increase the electron density on the rhodium atom.

The $\mathbf{C}-\mathrm{C}$ distances in the cyclopentadienyl ring (see Table 5) of [$\mathrm{Rh}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ $\left.\mathrm{H}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}$ show a variation which is consistent with a degree of localization in carbon-carbon bonding, which can be represented approximately by the "ene-enyl" form illustrated in III. A similar localization has been reported for [$\left.\mathrm{Rh}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}(\mathrm{acac})_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$, where the cyclopentadienyl rings are trans to two oxygen atoms and a carbon atom of the bridging acetylacetonate ligands [25]. The short $\mathbf{C}-\mathbf{C}$ bond of the cyclopentadienyl ligand lies trans to the carbon atom of acetyacetonate ligand which has a high trans-influence.

In an $\mathrm{ML}_{2} \mathrm{X}$ fragment the $d_{x z}$ and $d_{y z}$ components of the e frontier orbital set illustrated below [26] are no longer degenerate and interact in different fashion

(Z)

(正)
with the components of the cyclopentadienyl e_{1} orbitals illustrated in VI and VII.

(VI)
(VI)

Extended Hückel molecular orbital calculations, details of which are given in the Appendix; on the ions [$\left.\mathrm{Rh}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{HL}_{2}\right]^{+}$(where $\mathrm{L}=\mathrm{NH}_{3}$ or PH_{3}), suggest that the asymmetry resulting from this loss of symmetry depends on the conformation of the $\left[\mathrm{M}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{HL}_{2}\right]^{+}$ion with an "ene-enyl"-localization resulting from conformation illustrated in VIII and a "diene" localization resulting from conformation illustrated in IX. The degree of localization sug-
gested by the calculated overlap populations is greater for the amine than the phosphine complex reflecting the greater difference in trans-influence between H^{-}and NH_{3}. The calculated localization effects are considerably smaller than those reported previously [27] for the complexes [$\left.L_{2} \mathrm{PtB}_{11} \mathrm{H}_{11}\right]^{2-}$. The calculated overlap populations and charges are given in VIII and IX. It is noteworthy

Overlap popuiations

(VIU)

(IX)
that the calculated charges reflect in a precise fashion the nodal characteristics of the cyclopentadienyl e_{1} orbitals illustrated in VI and VII.

Appendix

All calculations were performed on the ICL 1906A computer at Oxford using the extended Hückel (ICON 8) programs developed by Prof. R. Hoffmann and his coworkers at Cornell University [28]. The following geometric parameters were used in the calculations: $\mathrm{Rh}-\mathrm{P} 2.308 \AA ; \mathrm{Rh}-\mathrm{N} 2.150 \AA ; \mathrm{P}-\mathrm{H}$ $1.200 \AA ; \mathrm{N}-\mathrm{H} 1.012 \AA ; \mathrm{Rh}-\mathrm{C} 2.2522 \AA ; \mathrm{C}-\mathrm{H} 1.09 \AA ; \mathrm{Rh}-\mathrm{H} 1.70 \AA$.

Tetrahedral angles about the nitrogen and phosphorus atoms were assumed.

The electronic parameters used in the calculation are summarised below:

Orbital	Exponent	$H_{\text {ii }}(\mathrm{eV})$			
Rh 5s	2.135	-8.00			
Rh 5 p	2.100	-4.50			
P3s	1.600	-18.60			
P 3p	1.600	-14.00			
N 2 s	1.95	-26.00			
N $2 p$	1.95	-13.40			
C 25	1.625	-21.40			
C 2p	1.625	-11.40			
H15	1.360	-13.60			
Orbital	Exp. 1	Coeff. 1	Exp. 2	Coeff. 2	$H_{\text {ii }}(\mathrm{eV})$
Rh 4 d	4.290	0.5807	1.970	0.5685	-12.50

References

M.L. Tobe, Inorganic Reaction Mechanisms, Nelson, London, 1972, p. 42-68.

2 J. Chatt, Advan. Organometal. Chem., 12 (1974) 1.
3 J. Chatt. L.A. Duncanson and L.M. Venanzi, J. Chem. Soc., (1955) 4456.
4 J. Chatt and B.L. Shaw. J. Chem. Soc., (1959) 705.
5 J. Chatt, L.A. Duncanson and B.L. Shaw, Proc. Chem. Soc., (1957) 343.
6 J. Chatt, Tilden Lecture, Proc. Chem. Soc., (1962) 318.
7 F. Basolo, J. Chatt, H.B. Gray, R.G. Pearson and B.L. Shaw, J. Chem. Soc., (1961) 2207.
8 A. Pidcock, R.E. Richards and L.M. Venanzi, J. Chem. Soc. (A), (1966) 1707.
9 J. Burdett, Inorg. Chem., 12 (1977) 3013.
10 L.F. Dahl and C.H. Wei. Inorg. Chem., 2 (1963) 713.
11 M.J. Bennett, M.R. Churchil. M. Gerloch and R. Mason, Nature, 201 (1964) 1318.
12 V.W. Day, K.J. Reimer and A. Shaver, J. Chem. Soc. Chem. Commun., (1975) 403.
13 P.M. Maitlis and J.W. Keay. J. Amer. Chem. Soc.. 90 (1968) 3259.
14 M.B. Hursthouse, K.M.A. Malik, D.M.P. Mingos and S.D. Willoughby, unpublished results.
15 International Tables for X-ray Crystallography, Kynoch Press, Birmingham, 1952, Vol. I.
16 The SHELX Crystal Structure Analysis Program, G. Sheldrick, University of Cambridge, 1976.
17 The PLUTO plotting routine program. W.D.S. Motherwell, University of Cambridge.
18 R.F. Stewart, E.R. Davison and W.T. Simpson, J. Chen. Phys., 42 (1965) 3175.
19 D.T. Cromer and J.B. Mann, Acta Cryst., A, 24 (1968) 321.
20 D.T. Gromer and D. Liberman, J. Chern. Phys., 53 (1970) 1891.
21 J.C. McGonway, A.C. Skapski, L. Phillips, R.T. Young and G. Wilkinson J. Chem. Soc. Chem. Conmun., (1974) 327.
22 M.R. Churchill and S.A. Julis, Inorg. Chem., 13 (1978) 3011.
23 M.R. Churchill and S.W.Y. Ni. J. Amer. Chem. Soc., 95 (1973) 2150.
24 J.A. Ibers, J. Organometal. Chem.. 73 (1974) 389.
25 W. Rigby, H.B. Lee, P.M. Bailey, J.A. McCleverty and P.M. Maitlis J. Chem. Soc. Dalton, (1979) 387.
26 M. Elian. M.M.L. Chen, D.M.P. Mingos and R. Hoffmann, Inorg. Chem., 15 (1976) 1148.
27 D.M.P. Mingos, J. Chem. Soc. Dalton, (1977) 602.
28 R. Hoffmann, J. Chem. Phys., 39 (1963) 1397.

[^0]: * Dedicated to Professor Joseph Chatt on the occasion of his 65th birthday.

[^1]: ${ }^{a} \mathrm{~m}=$ multiplet, ${ }^{6} \mathrm{dt}=$ doublet of triplets,

[^2]: * Lists of observed and calculated structure factors are available from the authors on request.

[^3]: * dba $=$ dibenzylideneacetone

